

Issue:

Credit hours: 3

Course Syllabus

Bachelor

Course information

Course#		Course title		Prerequisite
0240386	Molecular Biology			240233
	Course type C			Room #
□ University R	Requirement	□ Faculty Requirement	9.45-10.35 am	2902
\boxtimes Major Requirement \square Elective ST				
⊠ Compulse	ory		Online	

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Prof. Raida Khalil	914	ext. 2250	TW: 11-15- pm	R_khalil@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method					
□ Physical □ Online ⊠ Blended					
	Learning Model				
Precentage Synchronous Asynchronous Phy					
			100%		

Course Description

The study of biological systems at the molecular level is known as molecular biology. Molecular biology studies how proteins and nucleic acids interact within cells to support healthy growth, division, and development. The subjects discussed include the chromosome organization, the molecular basis of .(gene regulation, and the structure and replication of DNA (Transcription and translation)

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes	
	Knowledge		
K1	Students will demonstrate knowledge of the central dogma of	K _P 1	
	biology and predict outcomes when the process malfunctions.		

K2	account for the genetic information flow in the eukaryotic cell; including nucleic acid structures, the definition of a gene,	K _P 3
K3	Correlate the protein-DNA interaction to DNA replication and gene expression	K _P 1
	Skills	
S1	Critique and professionally present primary literature articles in the general Molecular Biology	S _P 4
S2	Assigned original article will hand in to students week ahead the group discussion	S _P 4
S 3	Predict the consequences of various types of mutations on gene expression and organism's viability.	S _P 2
	Competencies	
C1	The organization of the genome, the replication, the formation of RNA (transcription), the processing of pre mRNA and the protein synthesis (translation).	C _P 1
C2	Account for how genes are regulated.	$C_P 1$

Learning Resources

Course textbook	Molecular Cell Biology Author(s): Lodish, A. Berk et al , 9 th edition (2021) Publisher: W. H. Freeman and Company ISBN: 978-1-4641-87445 (8 th edition)		
Supporting References	<u>Recent literature(suggested readings and web sites required for</u> assignments through Philadelphia library resources,		
Supporting websites	https://pubmed.ncbi.nlm.nih.gov		
Teaching Environment	⊠Classroom □ laboratory ⊠Learning platform □Other		

Meetings and subjects timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1	Discuss course syllabus Introduction to course contents and to The Structures of DNA and other Macromolecules	lectures + Discussion	Revision Background related to topic Assessment	Chapters 2 & 5
2	The Structures and versatility of RNA Chemical and Physical properties of Nucleic Acids	lectures + Discussion	Assessment	Chapter 5
3	The Replication of DNA	Lecture problem solving based learning	Assessment Article assigned	Chapter 5
4	DNA Repair and Recombination	Lectures+ , problem solving based learning	Presentation According to assigned schedule	Chapter 5

r		т	· · · ·	
	Eukaryotic Gene Structure and	Lectures+	Assessment	
	Organization	, problem		
F	Chromosomal Organization of Genes and			Charter 7
5	Noncoding DNA			Chapter 7
	Simple and Complex Transcription	Lectures+	Assessment	
	Units Are Found in Eukaryotic	, problem		Chapter 7
6	Genomes			L ·
_	Transposable (Mobile) DNA Elements	Lectures+	Assessment	Chapter 7
7		, problem		1
	Structural Organization of	Lectures+	Assessment	
Ω	Eukaryotic Chromatin and	, problem	Article	Charter 7
8	Chromosomes	solving based	assigned	Chapter 7
	Midterm	learning		
	Transcriptional Control of	Lectures+	Assessment	
	Gene Expression	, problem	Article	
9	Overview of Eukaryotic	solving based	assigned	Chapter 8
	Transcription	learning Colloborative		L
		Collaborative learning		
	Overview of Eukaryotic	Lectures+	Assessment	
10	Transcription	, flipped Class	Article	Chapter 8
10	1 anser pron	,	assigned	Chapter 0
11	RNA Polymerase II Promoters	Lectures+	Assessment	
	and General Transcription Factors	, problem	Article	Chapter 8
12		solving based	assigned	pror 0
	Pogulatory Seguences for	learning Lectures+	Assessment	
	Regulatory Sequences for Protein-Coding Genes and the	, problem	Assessment Article	
13	Proteins Through Which They	solving based	assigned	Chapter 8
	Function	learning		
	-Molecular Mechanisms of	Lectures+	Assessment	
	Transcription Repression and	, problem		
	Activation	solving based		
1.4	-Epigenetic Regulation of	learning		
14	Transcription			Chapter 8
	-Post-Transcriptional Gene			
	Control			
	Stepwise Synthesis of Proteins	Lectures+	Article	
1 -	on Ribosomes	, problem	assigned	
15		solving based	Video	Chapter 5
		learning flipped Class		
16	Final Exam			
		L		

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology			
Educated videos, Links related to topics ; Learning Analysis Journals ; presentations prepared by students			
Communication skills			
Discussion assigned articles by collaborative learning			
Application of concepts learnt			
At the end of each topics students will expose to the medical and pharmaceutical applications of different concepts of Molecular Biology			

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	Week 8	K1 and C1
Various Assessments *	% 30	Each week	All
Final Exam	% 40	Week 16	All
Total	%100		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Number	Learning Outcomes	Learning Method*	Assessment Method**
	Knowledge		
K1	Students will demonstrate knowledge of the central dogma of biology and predict outcomes when the process malfunctions.	Lecture problem solving based learning	Quiz videotaped assignment
K2	account for the genetic information flow in the eukaryotic cell; including nucleic acid structures, the definition of a gene,	Lecture problem solving based learning llaborative learning	Assignment Quiz
K3	Correlate the protein-DNA interaction to DNA	Lecture	Assignment

Alignment of Course Outcomes with Learning and Assessment Methods

	replication and gene expression	problem solving based learning llaborative learning	Quiz Presentation			
	Skills					
S1	Critique and professionally present primary literature articles in the general Molecular Biology	problem solving based learning llaborative learning	Quiz videotaped assignment			
S2	Assigned original article will hand in to students week ahead the group discussion	flipped Class	assignment Quiz videotaped assignment			
83	Predict the consequences of various types of mutations on gene expression and organism's viability.	flipped Class collaborative learning	Assignment Presentation			
	Competencies	·				
C1	The organization of the genome, the replication, the formation of RNA (transcription), the processing of pre mRNA and the protein synthesis (translation).	collaborative learning	Quiz			
C2	Account for how genes are regulated.		Quiz Presentation Assignment			

* includes: Lecture, flipped Class, project- based learning , problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements			
Passing Grade	The minimum passing grade for the course is (50%) and the minimum			
	final mark recorded on transcript is (35%).			
	• Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment.			
Missing Exams	• A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from the an exam or assessment due date.			
	• A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.			
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S,T,R). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due			

	to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.			
Academic	Philadelphia University pays special attention to the issue of academic			
Honesty	integrity, and the penalties stipulated in the university's instructions are			
	applied to those who are proven to have committed an act that violates			
	academic integrity, such as: cheating, plagiarism (academic theft),			
	collusion, and violating intellectual property rights.			

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
K _p 1	Understand and recognize the biochemical, molecular and cellular structure of organisms and biological systems.	Molecular biology	Comprehensive exam	%1 students will achieve 68% and more based on assessment rubric

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment	
Kp1	Comprehensive questions (10 marks included in the final exam)	

Assessment Rubric of the Program Learning Outcome

criteria	score				
	4	3	2	1	
Concept	The answers given indicate a thorough understanding of the concept	The answers given indicate a less comprehensive understanding of the concept	The answers given indicate misconceptions	The answers given indicate the student are not understand the concept	
Comprehensive	The answers given indicate the ability to relate one information to another, comprehensively	The answers given indicate the ability to relate one information to another, partly	The answers given indicate less ability to relate one information to another	The answers given indicate not comprehensive	
Language structure	The answers given in accurate ,short ,and clear sentences	The answers given in accurate and short sentences ,but clear	The answers given in short sentences , but not accurate nor clear	The answers are not given in accurate , short , and clear sentences	